Question 598011
Solve for x. 
log base 6 of (3x+14) - log base 6 of 5 = log base 6 of (2x) 
log6(3x+14)-log6(5)=log6(2x)
log6(3x+14)-log6(5)-log6(2x)=0
log6(3x+14)-(log6(5)+log6(2x))=0
place under single log
log6[(3x+14)/(5*2x)]=0
log6[(3x+14)/(10x)]=0
convert to exponential form: base(6) raised to log of number(0)=number(3x+14)/(10x)
6^0=(3x+14)/(10x)=1
10x=3x+14
7x=14
x=2