Question 597922


{{{3x^2-36x+60}}} Start with the given expression.



{{{3(x^2-12x+20)}}} Factor out the GCF {{{3}}}.



Now let's try to factor the inner expression {{{x^2-12x+20}}}



---------------------------------------------------------------



Looking at the expression {{{x^2-12x+20}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-12}}}, and the last term is {{{20}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{20}}} to get {{{(1)(20)=20}}}.



Now the question is: what two whole numbers multiply to {{{20}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-12}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{20}}} (the previous product).



Factors of {{{20}}}:

1,2,4,5,10,20

-1,-2,-4,-5,-10,-20



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{20}}}.

1*20 = 20
2*10 = 20
4*5 = 20
(-1)*(-20) = 20
(-2)*(-10) = 20
(-4)*(-5) = 20


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-12}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>1+20=21</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>2+10=12</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>4+5=9</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-1+(-20)=-21</font></td></tr><tr><td  align="center"><font color=red>-2</font></td><td  align="center"><font color=red>-10</font></td><td  align="center"><font color=red>-2+(-10)=-12</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-4+(-5)=-9</font></td></tr></table>



From the table, we can see that the two numbers {{{-2}}} and {{{-10}}} add to {{{-12}}} (the middle coefficient).



So the two numbers {{{-2}}} and {{{-10}}} both multiply to {{{20}}} <font size=4><b>and</b></font> add to {{{-12}}}



Now replace the middle term {{{-12x}}} with {{{-2x-10x}}}. Remember, {{{-2}}} and {{{-10}}} add to {{{-12}}}. So this shows us that {{{-2x-10x=-12x}}}.



{{{x^2+highlight(-2x-10x)+20}}} Replace the second term {{{-12x}}} with {{{-2x-10x}}}.



{{{(x^2-2x)+(-10x+20)}}} Group the terms into two pairs.



{{{x(x-2)+(-10x+20)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x-2)-10(x-2)}}} Factor out {{{10}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-10)(x-2)}}} Combine like terms. Or factor out the common term {{{x-2}}}



--------------------------------------------------



So {{{3(x^2-12x+20)}}} then factors further to {{{3(x-10)(x-2)}}}



===============================================================



Answer:



So {{{3x^2-36x+60}}} completely factors to {{{3(x-10)(x-2)}}}.



In other words, {{{3x^2-36x+60=3(x-10)(x-2)}}}.



Note: you can check the answer by expanding {{{3(x-10)(x-2)}}} to get {{{3x^2-36x+60}}} or by graphing the original expression and the answer (the two graphs should be identical).