Question 597396
Hi, there--
.
{{{(t-3)(4t-1)(3t-7)}}}
.
Multiply the last two factors together using the distributive property.
{{{(4t-1)(3t-7)=(4t)(3t)+(4t)(-7)+(-1)(3t)+(-1)(-7)}}}
{{{(4t-1)(3t-7)=(12t^2)+(-28t)+(-3t)+(7)}}}
{{{(4t-1)(3t-7)=12t^2-28t-3t+7}}}
{{{(4t-1)(3t-7)=12t^2-31t+7}}}
.
Now use the distributive property to multiply {{{(t-3)(12t^2-31t+7)}}}.
{{{(t-3)(12t^2-31t+7)=(t)(12t^2)+(t)(-31t)+(t)(7)+(-3)(12t^2)+(-3)(-31t)+(-3)(7)}}}
{{{(t-3)(12t^2-31t+7)=(12t^3)+(-31t^2)+(7t)+(-36t^2)+(93t)+(-21)}}}
{{{(t-3)(12t^2-31t+7)=12t^3-31t^2+7t-36t^2+93t-21}}}
{{{(t-3)(12t^2-31t+7)=12t^3-67t^2+100t-21}}}
.
The polynomial in standard form is {{{12t^3-67t^2+100t-21}}}.
The leading coefficient is 12.
.
Good luck!
Ms.Figgy
math.in.the.vortex@gmail.com