Question 597184
<font face="Times New Roman" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ Q(t)\ =\ Q_0e^{rt}]


The proportion left after *[tex \Large t] years at a given decay rate *[tex \Large r] would be:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{Q(t)}{Q_0}\ =\ e^{rt}]


So the percentage would be


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 100\,\cdot\,\frac{Q(t)}{Q_0}\ =\ 100\,\cdot\,e^{rt}]


Just plug in the numbers for *[tex \LARGE r] and *[tex \LARGE t] then do the arithmetic.  Round appropriately at the end of your calculations.


John
*[tex \LARGE e^{i\pi} + 1 = 0]
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>