Question 594784
Given that {{{log(2,(x))}}} = m and {{{log(2,(y))}}} = n, express in terms of m and n:
<pre>
Rules needed to do problems:

{{{log(B,(B))=1}}}, {{{log(B,(B^A))=A}}}, {{{log(B,ACD)=log(B,(A))+log(B,(C))+log(B,(D))}}}, {{{log(B,(A/C))=log(B,(A))-log(B,(C))}}}, {{{log(B,(A^C))=C*log(B,(A))}}}

A) {{{log(2,(8x^2y))}}} = {{{log(2,(8))}}} + {{{log(2,(x^2))}}} + {{{log(2,(y))}}} = {{{log(2,(2^3))}}} + {{{2log(2,(x))}}} + {{{log(2,(y))}}} = {{{3}}} + {{{2log(2,(x))}}} + {{{log(2,(y))}}} = 3 + 2m + n 

B) {{{log(2,(y/(2x)))}}} = {{{log(2,(y))}}} - {{{log(2,(2x))}}} = {{{log(2,(y))}}} - ({{{log(2,(2))}}} + {{{log(2,(x))}}}) = {{{log(2,(y))}}} - {{{log(2,(2))}}} - {{{log(2,(x))}}} = n - 1 - m

Edwin</pre>