Question 594113
{{{y=-3x^2+4}}}


{{{0=-3x^2+4}}}


{{{-3x^2+4=0}}}


{{{3x^2-4=0}}}



Now use the quadratic formula to solve



{{{x = (-b+-sqrt(b^2-4ac))/(2a)}}}


{{{x = (-(0)+-sqrt((0)^2-4(3)(-4)))/(2(3))}}}


{{{x = (0+-sqrt(0-(-48)))/(6)}}}


{{{x = (""+-sqrt(48))/6}}}


{{{x = (sqrt(48))/6}}} or {{{x = (-sqrt(48))/6}}}


{{{x = (4*sqrt(3))/6}}} or {{{x = (-4*sqrt(3))/6}}}


{{{x = (2*sqrt(3))/3}}} or {{{x = (-2*sqrt(3))/3}}}



So the exact roots are {{{x = (2*sqrt(3))/3}}} or {{{x = (-2*sqrt(3))/3}}}


These roots approximate to {{{x = 1.1547}}} or {{{x = -1.1547}}}