Question 591835


Looking at the expression {{{4c^2+15c+9}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{15}}}, and the last term is {{{9}}}.



Now multiply the first coefficient {{{4}}} by the last term {{{9}}} to get {{{(4)(9)=36}}}.



Now the question is: what two whole numbers multiply to {{{36}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{15}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{36}}} (the previous product).



Factors of {{{36}}}:

1,2,3,4,6,9,12,18,36

-1,-2,-3,-4,-6,-9,-12,-18,-36



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{36}}}.

1*36 = 36
2*18 = 36
3*12 = 36
4*9 = 36
6*6 = 36
(-1)*(-36) = 36
(-2)*(-18) = 36
(-3)*(-12) = 36
(-4)*(-9) = 36
(-6)*(-6) = 36


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{15}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>1+36=37</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>2+18=20</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>12</font></td><td  align="center"><font color=red>3+12=15</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>4+9=13</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>6+6=12</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>-1+(-36)=-37</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-2+(-18)=-20</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-3+(-12)=-15</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-4+(-9)=-13</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-6+(-6)=-12</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{12}}} add to {{{15}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{12}}} both multiply to {{{36}}} <font size=4><b>and</b></font> add to {{{15}}}



Now replace the middle term {{{15c}}} with {{{3c+12c}}}. Remember, {{{3}}} and {{{12}}} add to {{{15}}}. So this shows us that {{{3c+12c=15c}}}.



{{{4c^2+highlight(3c+12c)+9}}} Replace the second term {{{15c}}} with {{{3c+12c}}}.



{{{(4c^2+3c)+(12c+9)}}} Group the terms into two pairs.



{{{c(4c+3)+(12c+9)}}} Factor out the GCF {{{c}}} from the first group.



{{{c(4c+3)+3(4c+3)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(c+3)(4c+3)}}} Combine like terms. Or factor out the common term {{{4c+3}}}



===============================================================



Answer:



So {{{4c^2+15c+9}}} factors to {{{(c+3)(4c+3)}}}.



In other words, {{{4c^2+15c+9=(c+3)(4c+3)}}}.



Note: you can check the answer by expanding {{{(c+3)(4c+3)}}} to get {{{4c^2+15c+9}}} or by graphing the original expression and the answer (the two graphs should be identical).