Question 588384


Looking at the expression {{{2x^2+5x+7}}}, we can see that the first coefficient is {{{2}}}, the second coefficient is {{{5}}}, and the last term is {{{7}}}.



Now multiply the first coefficient {{{2}}} by the last term {{{7}}} to get {{{(2)(7)=14}}}.



Now the question is: what two whole numbers multiply to {{{14}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{5}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{14}}} (the previous product).



Factors of {{{14}}}:

1,2,7,14

-1,-2,-7,-14



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{14}}}.

1*14 = 14
2*7 = 14
(-1)*(-14) = 14
(-2)*(-7) = 14


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{5}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>1+14=15</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>2+7=9</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>-1+(-14)=-15</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-2+(-7)=-9</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{5}}}. So {{{2x^2+5x+7}}} cannot be factored.



===============================================================


<a name="ans">


Answer:



So {{{2x^2+5x+7}}} doesn't factor at all (over the rational numbers).



So {{{2x^2+5x+7}}} is prime.


<font color="red">--------------------------------------------------------------------------------------------------------------</font>
If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim
<font color="red">--------------------------------------------------------------------------------------------------------------</font>