Question 587836
Let the units digit = {{{b}}}
Let the tens digit = {{{a}}}
given:
(1) {{{ a = b + 3 }}}
(2) {{{ 10b + a = 10a + b - 27 }}}
-------------------------
(2) {{{ 10b - b = 10a - a - 27 }}}
(2) {{{ 9b = 9a - 27 }}}
(2) {{{ b = a - 3 }}}
---------------
Substitute (1) into (2)
(2) {{{ b = b + 3 - 3 }}}
(2) {{{ b = b }}}
------------
This is telling me that any number
ab where {{{ a = b + 3 }}} solves the problem
So I'll try {{{ a = 6 }}}, {{{ b = 9 }}}
69 with digits reversed is 96 and {{{ 96 - 69 = 27 }}}
I'll try {{{ a = 3 }}}, {{{ b = 6 }}}
36 with digits reversed is 63 {{{ 63 - 36 = 27 }}}
---------
You can try other 2 digit numbers