Question 582095


{{{8x^2y+34xy-84y}}} Start with the given expression.



{{{2y(4x^2+17x-42)}}} Factor out the GCF {{{2y}}}.



Now let's try to factor the inner expression {{{4x^2+17x-42}}}



---------------------------------------------------------------



Looking at the expression {{{4x^2+17x-42}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{17}}}, and the last term is {{{-42}}}.



Now multiply the first coefficient {{{4}}} by the last term {{{-42}}} to get {{{(4)(-42)=-168}}}.



Now the question is: what two whole numbers multiply to {{{-168}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{17}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-168}}} (the previous product).



Factors of {{{-168}}}:

1,2,3,4,6,7,8,12,14,21,24,28,42,56,84,168

-1,-2,-3,-4,-6,-7,-8,-12,-14,-21,-24,-28,-42,-56,-84,-168



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-168}}}.

1*(-168) = -168
2*(-84) = -168
3*(-56) = -168
4*(-42) = -168
6*(-28) = -168
7*(-24) = -168
8*(-21) = -168
12*(-14) = -168
(-1)*(168) = -168
(-2)*(84) = -168
(-3)*(56) = -168
(-4)*(42) = -168
(-6)*(28) = -168
(-7)*(24) = -168
(-8)*(21) = -168
(-12)*(14) = -168


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{17}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-168</font></td><td  align="center"><font color=black>1+(-168)=-167</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-84</font></td><td  align="center"><font color=black>2+(-84)=-82</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-56</font></td><td  align="center"><font color=black>3+(-56)=-53</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-42</font></td><td  align="center"><font color=black>4+(-42)=-38</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>6+(-28)=-22</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>7+(-24)=-17</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>8+(-21)=-13</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>12+(-14)=-2</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>168</font></td><td  align="center"><font color=black>-1+168=167</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>84</font></td><td  align="center"><font color=black>-2+84=82</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>56</font></td><td  align="center"><font color=black>-3+56=53</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>-4+42=38</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>-6+28=22</font></td></tr><tr><td  align="center"><font color=red>-7</font></td><td  align="center"><font color=red>24</font></td><td  align="center"><font color=red>-7+24=17</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>-8+21=13</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>-12+14=2</font></td></tr></table>



From the table, we can see that the two numbers {{{-7}}} and {{{24}}} add to {{{17}}} (the middle coefficient).



So the two numbers {{{-7}}} and {{{24}}} both multiply to {{{-168}}} <font size=4><b>and</b></font> add to {{{17}}}



Now replace the middle term {{{17x}}} with {{{-7x+24x}}}. Remember, {{{-7}}} and {{{24}}} add to {{{17}}}. So this shows us that {{{-7x+24x=17x}}}.



{{{4x^2+highlight(-7x+24x)-42}}} Replace the second term {{{17x}}} with {{{-7x+24x}}}.



{{{(4x^2-7x)+(24x-42)}}} Group the terms into two pairs.



{{{x(4x-7)+(24x-42)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(4x-7)+6(4x-7)}}} Factor out {{{6}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+6)(4x-7)}}} Combine like terms. Or factor out the common term {{{4x-7}}}



--------------------------------------------------



So {{{2y(4x^2+17x-42)}}} then factors further to {{{2y(x+6)(4x-7)}}}



===============================================================



Answer:



So {{{8x^2y+34xy-84y}}} completely factors to {{{2y(x+6)(4x-7)}}}.



In other words, {{{8x^2y+34xy-84y=2y(x+6)(4x-7)}}}.



Note: you can check the answer by expanding {{{2y(x+6)(4x-7)}}} to get {{{8x^2y+34xy-84y}}} or by graphing the original expression and the answer (the two graphs should be identical).