Question 581992


{{{63b^2+294bf+343f^2}}} Start with the given expression.



{{{7(9b^2+42bf+49f^2)}}} Factor out the GCF {{{7}}}.



Now let's try to factor the inner expression {{{9b^2+42bf+49f^2}}}



---------------------------------------------------------------



Looking at the expression {{{9b^2+42bf+49f^2}}}, we can see that the first coefficient is {{{9}}}, the second coefficient is {{{42}}}, and the last coefficient is {{{49}}}.



Now multiply the first coefficient {{{9}}} by the last coefficient {{{49}}} to get {{{(9)(49)=441}}}.



Now the question is: what two whole numbers multiply to {{{441}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{42}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{441}}} (the previous product).



Factors of {{{441}}}:

1,3,7,9,21,49,63,147,441

-1,-3,-7,-9,-21,-49,-63,-147,-441



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{441}}}.

1*441 = 441
3*147 = 441
7*63 = 441
9*49 = 441
21*21 = 441
(-1)*(-441) = 441
(-3)*(-147) = 441
(-7)*(-63) = 441
(-9)*(-49) = 441
(-21)*(-21) = 441


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{42}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>441</font></td><td  align="center"><font color=black>1+441=442</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>147</font></td><td  align="center"><font color=black>3+147=150</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>63</font></td><td  align="center"><font color=black>7+63=70</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>49</font></td><td  align="center"><font color=black>9+49=58</font></td></tr><tr><td  align="center"><font color=red>21</font></td><td  align="center"><font color=red>21</font></td><td  align="center"><font color=red>21+21=42</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-441</font></td><td  align="center"><font color=black>-1+(-441)=-442</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-147</font></td><td  align="center"><font color=black>-3+(-147)=-150</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-63</font></td><td  align="center"><font color=black>-7+(-63)=-70</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-49</font></td><td  align="center"><font color=black>-9+(-49)=-58</font></td></tr><tr><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>-21+(-21)=-42</font></td></tr></table>



From the table, we can see that the two numbers {{{21}}} and {{{21}}} add to {{{42}}} (the middle coefficient).



So the two numbers {{{21}}} and {{{21}}} both multiply to {{{441}}} <font size=4><b>and</b></font> add to {{{42}}}



Now replace the middle term {{{42bf}}} with {{{21bf+21bf}}}. Remember, {{{21}}} and {{{21}}} add to {{{42}}}. So this shows us that {{{21bf+21bf=42bf}}}.



{{{9b^2+highlight(21bf+21bf)+49f^2}}} Replace the second term {{{42bf}}} with {{{21bf+21bf}}}.



{{{(9b^2+21bf)+(21bf+49f^2)}}} Group the terms into two pairs.



{{{3b(3b+7f)+(21bf+49f^2)}}} Factor out the GCF {{{3b}}} from the first group.



{{{3b(3b+7f)+7f(3b+7f)}}} Factor out {{{7f}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(3b+7f)(3b+7f)}}} Combine like terms. Or factor out the common term {{{3b+7f}}}



{{{(3b+7f)^2}}} Condense the terms.



--------------------------------------------------



So {{{7(9b^2+42bf+49f^2)}}} then factors further to {{{7(3b+7f)^2}}}



===============================================================



Answer:



So {{{63b^2+294bf+343f^2}}} completely factors to {{{7(3b+7f)^2}}}.



In other words, {{{63b^2+294bf+343f^2=7(3b+7f)^2}}}.



Note: you can check the answer by expanding {{{7(3b+7f)^2}}} to get {{{63b^2+294bf+343f^2}}} or by graphing the original expression and the answer (the two graphs should be identical).