Question 581668
{{{(4p^2-4pq)/(p^2-q^2) - (4p-3q)/(p+q)}}}


{{{(4p^2-4pq)/((p+q)(p-q)) - (4p-3q)/(p+q)}}}


{{{(4p^2-4pq)/((p+q)(p-q)) - ((4p-3q)(p-q))/((p+q)(p-q))}}}


{{{(4p^2-4pq)/((p+q)(p-q)) - (4p^2-4pq-3pq+3q^2)/((p+q)(p-q))}}}


{{{(4p^2-4pq)/((p+q)(p-q)) - (4p^2-7pq+3q^2)/((p+q)(p-q))}}}


{{{(4p^2-4pq-(4p^2-7pq+3q^2))/((p+q)(p-q))}}}


{{{(4p^2-4pq-4p^2+7pq-3q^2)/((p+q)(p-q))}}}


{{{(3pq-3q^2)/((p+q)(p-q))}}}


{{{(3q(p-q))/((p+q)(p-q))}}}


{{{(3q*highlight((p-q)))/((p+q)*highlight((p-q)))}}}


{{{(3q*cross((p-q)))/((p+q)*cross((p-q)))}}}


{{{(3q)/(p+q)}}}



So {{{(4p^2-4pq)/(p^2-q^2) - (4p-3q)/(p+q)}}} completely simplifies to {{{(3q)/(p+q)}}}



In other words, {{{(4p^2-4pq)/(p^2-q^2) - (4p-3q)/(p+q)=(3q)/(p+q)}}} for all values of p and q where p does not equal q and p does not equal -q