Question 575096
You probably meant {{{(a+5)^2}}} and {{{a^2+5^2}}}.
It does not show that way, but I'm just guessing.
Any value for a except zero would show that {{{(a+5)^2}}} and {{{a^2+5^2}}} are not equivalent.
{{{drawing(300,200,-11,10,-4,10,
rectangle(-9,0,-1,8),line(-9,5,-1,5),line(-4,0,-4,8),
rectangle(1,0,6,5),rectangle(6,5,9,8),
locate(-7,3.5,a^2), locate(-3,7.5,5^2),
locate(-3,3,5a),locate(-7,7,5a),
arrow(-6.1,-1,-9,-1),arrow(-3.9,-1,-1,-1),
arrow(-10,4.5,-10,8),arrow(-10,3.5,-10,0),
locate(-6,-0.5,a+5),locate(-10.9,4.5,a+5)
locate(3,6,a),locate(6.1,3,a),locate(7,9,5),locate(9.1,7,5),
locate(3,3.5,a^2),locate(7,7.5,5^2),
locate(-10.5,-2,"Total"),locate(-7.5,-2,"Area"),
locate(-5,-2,"="),locate(-4,-1.5,(a+5)^2),
locate(1,-2,"Total"),locate(4,-2,"Area"),
locate(6.5,-2,"="),locate(7.5,-1.5,a^2+5^2)
)}}}