Question 572748
I believe you meant something like:
{{{((4x^3+7x-2x)/(2x^2-162))*((12x-60)/(4x^2+15x-4))*((x^2+9x)/(x^2-3x-10))}}}=((4x^3+7x-2x)/(2x^2-162))*((12x-60)/(4x^2+15x-4))*((x^2+9x)/(x^2-3x-10))
A whole bunch of parentheses are needed if you cannot write a horizontal fraction bar. (Those wonderful fraction bars come with invisible sets of brackets enclosing numerator and denominator).
I also believe you lost an exponent 2, so I'll put it back, and I'll multiply all those fractions into one, as we do with numbers:
{{{((4x^3+7x^2-2x)/(2x^2-162))*((12x-60)/(4x^2+15x-4))*((x^2+9x)/(x^2-3x-10))=(4x^3+7x^2-2x)/(2x^2-162)* (12x-60)/(4x^2+15x-4)* (x^2+9x)/(x^2-3x-10)}}}
Next comes a lot of factoring
{{{(4x^3+7x^2-2x)/(2x^2-162)*(12x-60)/(4x^2+15x-4)* (x^2+9x)/(x^2-3x-10)}}}={{{x(4x-1)(x+2)*12(x-5)*x(x+9) /2(x-9)(x+9)(4x-1)(x+4)(x+2)(x-5)}}},
followed by cancelling out factors that appear on both sides of the fraction bar
={{{(12/2)}}}{{{(x*x /(x-9)(x+4))}}} {{{((4x-1)/(4x-1))*((x+2)/(x+2))*((x-5)/(x-5))*((x+9)/(x+9))=6x^2/(x-9)(x+4))}}}