Question 570028
<font face="Times New Roman" size="+2">


<i><b>Step 1.</b></i>  Move the constant term to the right hand side.  This step is already done.


<i><b>Step 2.</b></i>  Divide through by the lead coefficient.  The lead coefficient in this problem is 1, so you can skip this step.


<i><b>Step 3.</b></i>  Divide the coefficient on the first degree term by 2.  In this case, 2 divided by 2 is 1.


<i><b>Step 4.</b></i> Square the result of Step 3.  1 squared is 1.


<i><b>Step 5.</b></i> Add the result of Step 4 to both sides of the equation.


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x^2\ +\ 2x\ +\ 1\ =\ 49]


<i><b>Step 6.</b></i> Factor the perfect square trinomial in the LHS:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ (x\ + 1)^2\ =\ 49]


<i><b>Step 7.</b></i> Take the square root of both sides, considering both the positive and negative root:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x\ +\ 1\ =\ \pm\sqrt{49}\ =\ \pm7]


So


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x\ +\ 1\ =\ 7]


or


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x\ +\ 1\ =\ -7]


<i><b>Step 8.</b></i> Solve the two linear equations to get your two roots.


John
*[tex \LARGE e^{i\pi} + 1 = 0]
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>