Question 54307
<pre><font size = 5>find the distance from point Q to line l (matrix)

Q=(0, 1, 0)

line = < x y z > = < 1 1 1 > + t< -2 0 3 >

Formula:
       __
     ||PQ × <b>u</b>||
D = ------------
       ||<b>u</b>||

where <b>u</b> is the direction vector for the line and
P is a point on the line

Using the direction numbers -2, 0, and 4, you know
that the direction vector for the line is

<b>u</b> = < -2, 0, 4 >

To find a point on the line, let t = 0 and obtain

P = (1, 1, 1)

Thus, since Q = (0, 1, 0)
__
PQ = < 0-1, 1-1, 0-1 > = < -1,0,-1 >
                          __
Now get the cross product PQ × <b>u</b>

__       | <b>i</b>  <b>j</b>  <b>k</b>| 
PQ × <b>u</b> = |-1  0 -1| = <b>i</b>(0+0) - <b>j</b>(-4-2) + <b>k</b>(0+0) = -6<b>j</b>
         |-2  0  4|
  __
||PQ × <b>u</b>|| = ||-6<b>j</b>|| = 6
         ____________    ______    __     _
||<b>u</b>|| = <font face = "symbol">Ö</font>(-2)²+0²+ 4² = <font face = "symbol">Ö</font>4+0+16 = <font face = "symbol">Ö</font>20 = 2<font face = "symbol">Ö</font>5
       __                            _
     ||PQ × <b>u</b>||      6       3     3<font face = "symbol">Ö</font>5
D = ------------ = ---<u>-</u>- = --<u>-</u>- = -----
       ||<b>u</b>||        2<font face = "symbol">Ö</font>5     <font face = "symbol">Ö</font>5      5

Edwin</pre>