Question 563053
Find center, vertices, and foci of the ellipse: (x+1)^2/16+(y-3)^2/25=1
**
Standard form of equation for an ellipse with vertical major axis: 
(x-h)^2/b^2+(y-k)^2/a^2=1, a>b, with (h,k) being the (x,y) coordinates of the center.
For given elllipse: (x+1)^2/16+(y-3)^2/25=1
center: (-1,3)
a^2=25
a=√25=5
Vertices: (-1,3±a)=(-1,3±5),=(-1,-2) and (-1, 8)
b^2=16
b=√16=4
Foci:
c^2=a^2-b^2=25-16=9
c=√9=3
Foci: (-1,3±c)=(-1,3±3),=(-1,0) and (-1, 6)