Question 561415


Looking at the expression {{{x^2+21x+54}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{21}}}, and the last term is {{{54}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{54}}} to get {{{(1)(54)=54}}}.



Now the question is: what two whole numbers multiply to {{{54}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{21}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{54}}} (the previous product).



Factors of {{{54}}}:

1,2,3,6,9,18,27,54

-1,-2,-3,-6,-9,-18,-27,-54



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{54}}}.

1*54 = 54
2*27 = 54
3*18 = 54
6*9 = 54
(-1)*(-54) = 54
(-2)*(-27) = 54
(-3)*(-18) = 54
(-6)*(-9) = 54


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{21}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>54</font></td><td  align="center"><font color=black>1+54=55</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>27</font></td><td  align="center"><font color=black>2+27=29</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>18</font></td><td  align="center"><font color=red>3+18=21</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>6+9=15</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-54</font></td><td  align="center"><font color=black>-1+(-54)=-55</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-27</font></td><td  align="center"><font color=black>-2+(-27)=-29</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-3+(-18)=-21</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-6+(-9)=-15</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{18}}} add to {{{21}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{18}}} both multiply to {{{54}}} <font size=4><b>and</b></font> add to {{{21}}}



Now replace the middle term {{{21x}}} with {{{3x+18x}}}. Remember, {{{3}}} and {{{18}}} add to {{{21}}}. So this shows us that {{{3x+18x=21x}}}.



{{{x^2+highlight(3x+18x)+54}}} Replace the second term {{{21x}}} with {{{3x+18x}}}.



{{{(x^2+3x)+(18x+54)}}} Group the terms into two pairs.



{{{x(x+3)+(18x+54)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x+3)+18(x+3)}}} Factor out {{{18}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+18)(x+3)}}} Combine like terms. Or factor out the common term {{{x+3}}}



===============================================================



Answer:



So {{{x^2+21x+54}}} factors to {{{(x+18)(x+3)}}}.



In other words, {{{x^2+21x+54=(x+18)(x+3)}}}.



Note: you can check the answer by expanding {{{(x+18)(x+3)}}} to get {{{x^2+21x+54}}} or by graphing the original expression and the answer (the two graphs should be identical).

<font color=red>-------------------------------------------------------------------------------------------------</font>

<b><font size=3>If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim</font></b>

<font color=red>-------------------------------------------------------------------------------------------------</font>