Question 560835
Note: *[Tex \LARGE \left(x_{1}, y_{1}\right)] is the first point *[Tex \LARGE \left(19,-16\right)]. So this means that {{{x[1]=19}}} and {{{y[1]=-16}}}.

Also, *[Tex \LARGE \left(x_{2}, y_{2}\right)] is the second point *[Tex \LARGE \left(-7,-15\right)].  So this means that {{{x[2]=-7}}} and {{{y[2]=-15}}}.



{{{m=(y[2]-y[1])/(x[2]-x[1])}}} Start with the slope formula.



{{{m=(-15--16)/(-7-19)}}} Plug in {{{y[2]=-15}}}, {{{y[1]=-16}}}, {{{x[2]=-7}}}, and {{{x[1]=19}}}



{{{m=(1)/(-7-19)}}} Subtract {{{-16}}} from {{{-15}}} to get {{{1}}}



{{{m=(1)/(-26)}}} Subtract {{{19}}} from {{{-7}}} to get {{{-26}}}



{{{m=-1/26}}} Reduce



So the slope of the line that goes through the points *[Tex \LARGE \left(19,-16\right)] and *[Tex \LARGE \left(-7,-15\right)] is {{{m=-1/26}}}

<font color=red>-------------------------------------------------------------------------------------------------</font>

<b><font size=3>If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim</font></b>

<font color=red>-------------------------------------------------------------------------------------------------</font>