Question 559817
I can see why you have trouble. It's hard to read.
Call the numbers {{{ a }}} and {{{ b }}}
given:
(1) {{{ a = 3b + 28 }}}
From this data, you can see that {{{ a }}} is the larger number
You can use this fact in the next equation
(2) {{{ 4a - 4b = 232 }}}
--------------------
(1) {{{ a - 3b = 28 }}}
and
Divide both sides of (2) by {{{4}}}
(2) {{{ a - b = 58 }}}
Subtract (1) from (2)
(2) {{{ a - b = 58 }}}
(1) {{{ -a + 3b = -28 }}}
{{{ 2b = 30 }}}
{{{ b = 15 }}}
and, since
(2) {{{ a - b = 58 }}}
(2) {{{ a - 15 = 58 }}}
(2) {{{ a = 58 + 15 }}}
(2) {{{ a = 73 }}}
The numbers are 73 and 15
check:
(1) {{{ a = 3b + 28 }}}
(1) {{{ 73 = 3*15 + 28 }}}
(1) {{{ 73 = 45 + 28 }}}
(1) {{{ 73 = 73 }}}
and
(2) {{{ 4a - 4b = 232 }}}
(2) {{{ 4*( a - b ) = 232 }}}
(2) {{{ 4*( 73 - 15 ) = 232 }}}
(2) {{{ 4*58 = 232 }}}
(2) {{{ 232 = 232 }}}
OK