Question 557671
Call the consecutive even integers
{{{ n }}}, {{{ n + 2 }}}, and {{{ n + 4 }}}
given:
{{{ 7*( n + n + 4 ) = 10*( n + 2 ) - 48 }}}
{{{ 7*( 2n + 4 ) = 10n + 20 - 48 }}}
{{{ 14n + 28 = 10n - 28 }}}
{{{ 4n = -56 }}}
{{{ n = -14 }}}
{{{ n + 2 = -12 }}}
{{{ n + 4 = -10 }}}
The consecutive even integers are  -10, -12, and -14
{{{ 7*( n + n + 4 ) = 10*( n + 2 ) - 48 }}}
{{{ 7*( -28 + 4 ) = 10*( -14 + 2 ) - 48 }}}
{{{ 7*(-24) = -120 - 48 }}}
{{{ -168 = -168 }}}
OK