Question 557658
<font face="Times New Roman" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ f(x)\ =\ 3x^4\ -\ 6x^2]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ f'(x)\ =\ 12x^3\ -\ 12x]


The three zeros of *[tex \Large f'(x)] are 0, 1, and -1


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ f''(x)\ =\ 36x^2\ -\ 12]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ f''(0)\ =\ -12\ <\ 0]


Therefore maximum


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ f''(1)\ =\ 24\ >\ 0]


Therefore minimum


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ f''(-1)\ =\ 24\ >\ 0]


Therefore minimum


John
*[tex \LARGE e^{i\pi} + 1 = 0]
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>