Question 557016
<font face="Times New Roman" size="+2">


For an inscribed *[tex \Large n]-gon, where the circle radius is *[tex \Large r], the formula is


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ A\ =\ \frac{r^2\cdot{n}\cdot\sin\left(\frac{2\pi}{n}\right)}{2}]


For the circumscribed *[tex \Large n]-gons:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ A\ =\ r^2\cdot{n}\cdot\tan\left(\frac{\pi}{n}\right)]


For your problem, *[tex \Large r\ =\ 1] in all cases.  Just start plugging in your values for *[tex \Large n] and do the arithmetic.



John
*[tex \LARGE e^{i\pi} + 1 = 0]
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>