Question 553035


{{{(2x+3)(x-2)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(2x)+3)(highlight(x)-2)}}} Multiply the <font color="red">F</font>irst terms:{{{(2*x)*(x)=2*x^2}}}.



{{{(highlight(2x)+3)(x+highlight(-2))}}} Multiply the <font color="red">O</font>uter terms:{{{(2*x)*(-2)=-4*x}}}.



{{{(2x+highlight(3))(highlight(x)-2)}}} Multiply the <font color="red">I</font>nner terms:{{{(3)*(x)=3*x}}}.



{{{(2x+highlight(3))(x+highlight(-2))}}} Multiply the <font color="red">L</font>ast terms:{{{(3)*(-2)=-6}}}.



---------------------------------------------------

So we have the terms: {{{2*x^2}}}, {{{-4*x}}}, {{{3*x}}}, {{{-6}}} 



{{{2*x^2-4*x+3*x-6}}} Now add every term listed above to make a single expression.



{{{2x^2-x-6}}} Now combine like terms.



So {{{(2x+3)(x-2)}}} FOILs to {{{2x^2-x-6}}}.



In other words, {{{(2x+3)(x-2)=2x^2-x-6}}}.