Question 552838


Looking at the expression {{{81s^2-72s+16}}}, we can see that the first coefficient is {{{81}}}, the second coefficient is {{{-72}}}, and the last term is {{{16}}}.



Now multiply the first coefficient {{{81}}} by the last term {{{16}}} to get {{{(81)(16)=1296}}}.



Now the question is: what two whole numbers multiply to {{{1296}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-72}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{1296}}} (the previous product).



Factors of {{{1296}}}:

1,2,3,4,6,8,9,12,16,18,24,27,36,48,54,72,81,108,144,162,216,324,432,648,1296

-1,-2,-3,-4,-6,-8,-9,-12,-16,-18,-24,-27,-36,-48,-54,-72,-81,-108,-144,-162,-216,-324,-432,-648,-1296



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{1296}}}.

1*1296 = 1296
2*648 = 1296
3*432 = 1296
4*324 = 1296
6*216 = 1296
8*162 = 1296
9*144 = 1296
12*108 = 1296
16*81 = 1296
18*72 = 1296
24*54 = 1296
27*48 = 1296
36*36 = 1296
(-1)*(-1296) = 1296
(-2)*(-648) = 1296
(-3)*(-432) = 1296
(-4)*(-324) = 1296
(-6)*(-216) = 1296
(-8)*(-162) = 1296
(-9)*(-144) = 1296
(-12)*(-108) = 1296
(-16)*(-81) = 1296
(-18)*(-72) = 1296
(-24)*(-54) = 1296
(-27)*(-48) = 1296
(-36)*(-36) = 1296


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-72}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>1296</font></td><td  align="center"><font color=black>1+1296=1297</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>648</font></td><td  align="center"><font color=black>2+648=650</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>432</font></td><td  align="center"><font color=black>3+432=435</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>324</font></td><td  align="center"><font color=black>4+324=328</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>216</font></td><td  align="center"><font color=black>6+216=222</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>162</font></td><td  align="center"><font color=black>8+162=170</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>144</font></td><td  align="center"><font color=black>9+144=153</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>108</font></td><td  align="center"><font color=black>12+108=120</font></td></tr><tr><td  align="center"><font color=black>16</font></td><td  align="center"><font color=black>81</font></td><td  align="center"><font color=black>16+81=97</font></td></tr><tr><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>72</font></td><td  align="center"><font color=black>18+72=90</font></td></tr><tr><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>54</font></td><td  align="center"><font color=black>24+54=78</font></td></tr><tr><td  align="center"><font color=black>27</font></td><td  align="center"><font color=black>48</font></td><td  align="center"><font color=black>27+48=75</font></td></tr><tr><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>36+36=72</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-1296</font></td><td  align="center"><font color=black>-1+(-1296)=-1297</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-648</font></td><td  align="center"><font color=black>-2+(-648)=-650</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-432</font></td><td  align="center"><font color=black>-3+(-432)=-435</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-324</font></td><td  align="center"><font color=black>-4+(-324)=-328</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-216</font></td><td  align="center"><font color=black>-6+(-216)=-222</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>-162</font></td><td  align="center"><font color=black>-8+(-162)=-170</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-144</font></td><td  align="center"><font color=black>-9+(-144)=-153</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-108</font></td><td  align="center"><font color=black>-12+(-108)=-120</font></td></tr><tr><td  align="center"><font color=black>-16</font></td><td  align="center"><font color=black>-81</font></td><td  align="center"><font color=black>-16+(-81)=-97</font></td></tr><tr><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-72</font></td><td  align="center"><font color=black>-18+(-72)=-90</font></td></tr><tr><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>-54</font></td><td  align="center"><font color=black>-24+(-54)=-78</font></td></tr><tr><td  align="center"><font color=black>-27</font></td><td  align="center"><font color=black>-48</font></td><td  align="center"><font color=black>-27+(-48)=-75</font></td></tr><tr><td  align="center"><font color=red>-36</font></td><td  align="center"><font color=red>-36</font></td><td  align="center"><font color=red>-36+(-36)=-72</font></td></tr></table>



From the table, we can see that the two numbers {{{-36}}} and {{{-36}}} add to {{{-72}}} (the middle coefficient).



So the two numbers {{{-36}}} and {{{-36}}} both multiply to {{{1296}}} <font size=4><b>and</b></font> add to {{{-72}}}



Now replace the middle term {{{-72s}}} with {{{-36s-36s}}}. Remember, {{{-36}}} and {{{-36}}} add to {{{-72}}}. So this shows us that {{{-36s-36s=-72s}}}.



{{{81s^2+highlight(-36s-36s)+16}}} Replace the second term {{{-72s}}} with {{{-36s-36s}}}.



{{{(81s^2-36s)+(-36s+16)}}} Group the terms into two pairs.



{{{9s(9s-4)+(-36s+16)}}} Factor out the GCF {{{9s}}} from the first group.



{{{9s(9s-4)-4(9s-4)}}} Factor out {{{4}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(9s-4)(9s-4)}}} Combine like terms. Or factor out the common term {{{9s-4}}}



{{{(9s-4)^2}}} Condense the terms.



===============================================================



Answer:



So {{{81s^2-72s+16}}} factors to {{{(9s-4)^2}}}.



In other words, {{{81s^2-72s+16=(9s-4)^2}}}.



Note: you can check the answer by expanding {{{(9s-4)^2}}} to get {{{81s^2-72s+16}}} or by graphing the original expression and the answer (the two graphs should be identical).