Question 552204


Looking at the expression {{{x^2+6x+40}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{6}}}, and the last term is {{{40}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{40}}} to get {{{(1)(40)=40}}}.



Now the question is: what two whole numbers multiply to {{{40}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{6}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{40}}} (the previous product).



Factors of {{{40}}}:

1,2,4,5,8,10,20,40

-1,-2,-4,-5,-8,-10,-20,-40



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{40}}}.

1*40 = 40
2*20 = 40
4*10 = 40
5*8 = 40
(-1)*(-40) = 40
(-2)*(-20) = 40
(-4)*(-10) = 40
(-5)*(-8) = 40


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{6}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>1+40=41</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>2+20=22</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>4+10=14</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>5+8=13</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-40</font></td><td  align="center"><font color=black>-1+(-40)=-41</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-2+(-20)=-22</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-4+(-10)=-14</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>-5+(-8)=-13</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{6}}}. So {{{x^2+6x+40}}} cannot be factored.



===============================================================


<a name="ans">


Answer:



So {{{x^2+6x+40}}} doesn't factor at all (over the rational numbers).



So {{{x^2+6x+40}}} is prime.