Question 551881


{{{A=P(1+r/n)^(n*t)}}} Start with the compound interest formula



{{{A=2500(1+0.057/4)^(4*3)}}} Plug in {{{P=2500}}}, {{{r=0.057}}} (the decimal equivalent of 5.7%), {{{n=4}}} and {{{t=3}}}.



{{{A=2500(1+0.01425)^(4*3)}}} Evaluate {{{0.057/4}}} to get {{{0.01425}}}



{{{A=2500(1.01425)^(4*3)}}} Add {{{1}}} to {{{0.01425}}} to get {{{1.01425}}}



{{{A=2500(1.01425)^(12)}}} Multiply {{{4}}} and {{{3}}} to get {{{12}}}.



{{{A=2500(1.1850596101584)}}} Evaluate {{{(1.01425)^(12)}}} to get {{{1.1850596101584}}}.



{{{A=2962.64902539601}}} Multiply {{{2500}}} and {{{1.1850596101584}}} to get {{{2962.64902539601}}}.



{{{A=2962.65}}} Round to the nearest hundredth (ie to the nearest penny).



So there will be $2,962.65 in the acount