Question 551510


Looking at the expression {{{28x^2+x-15}}}, we can see that the first coefficient is {{{28}}}, the second coefficient is {{{1}}}, and the last term is {{{-15}}}.



Now multiply the first coefficient {{{28}}} by the last term {{{-15}}} to get {{{(28)(-15)=-420}}}.



Now the question is: what two whole numbers multiply to {{{-420}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{1}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-420}}} (the previous product).



Factors of {{{-420}}}:

1,2,3,4,5,6,7,10,12,14,15,20,21,28,30,35,42,60,70,84,105,140,210,420

-1,-2,-3,-4,-5,-6,-7,-10,-12,-14,-15,-20,-21,-28,-30,-35,-42,-60,-70,-84,-105,-140,-210,-420



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-420}}}.

1*(-420) = -420
2*(-210) = -420
3*(-140) = -420
4*(-105) = -420
5*(-84) = -420
6*(-70) = -420
7*(-60) = -420
10*(-42) = -420
12*(-35) = -420
14*(-30) = -420
15*(-28) = -420
20*(-21) = -420
(-1)*(420) = -420
(-2)*(210) = -420
(-3)*(140) = -420
(-4)*(105) = -420
(-5)*(84) = -420
(-6)*(70) = -420
(-7)*(60) = -420
(-10)*(42) = -420
(-12)*(35) = -420
(-14)*(30) = -420
(-15)*(28) = -420
(-20)*(21) = -420


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{1}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-420</font></td><td  align="center"><font color=black>1+(-420)=-419</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-210</font></td><td  align="center"><font color=black>2+(-210)=-208</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-140</font></td><td  align="center"><font color=black>3+(-140)=-137</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-105</font></td><td  align="center"><font color=black>4+(-105)=-101</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-84</font></td><td  align="center"><font color=black>5+(-84)=-79</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-70</font></td><td  align="center"><font color=black>6+(-70)=-64</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>7+(-60)=-53</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-42</font></td><td  align="center"><font color=black>10+(-42)=-32</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-35</font></td><td  align="center"><font color=black>12+(-35)=-23</font></td></tr><tr><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>14+(-30)=-16</font></td></tr><tr><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>15+(-28)=-13</font></td></tr><tr><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>20+(-21)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>420</font></td><td  align="center"><font color=black>-1+420=419</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>210</font></td><td  align="center"><font color=black>-2+210=208</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>140</font></td><td  align="center"><font color=black>-3+140=137</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>105</font></td><td  align="center"><font color=black>-4+105=101</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>84</font></td><td  align="center"><font color=black>-5+84=79</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>70</font></td><td  align="center"><font color=black>-6+70=64</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>-7+60=53</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>-10+42=32</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>35</font></td><td  align="center"><font color=black>-12+35=23</font></td></tr><tr><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>-14+30=16</font></td></tr><tr><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>-15+28=13</font></td></tr><tr><td  align="center"><font color=red>-20</font></td><td  align="center"><font color=red>21</font></td><td  align="center"><font color=red>-20+21=1</font></td></tr></table>



From the table, we can see that the two numbers {{{-20}}} and {{{21}}} add to {{{1}}} (the middle coefficient).



So the two numbers {{{-20}}} and {{{21}}} both multiply to {{{-420}}} <font size=4><b>and</b></font> add to {{{1}}}



Now replace the middle term {{{1x}}} with {{{-20x+21x}}}. Remember, {{{-20}}} and {{{21}}} add to {{{1}}}. So this shows us that {{{-20x+21x=1x}}}.



{{{28x^2+highlight(-20x+21x)-15}}} Replace the second term {{{1x}}} with {{{-20x+21x}}}.



{{{(28x^2-20x)+(21x-15)}}} Group the terms into two pairs.



{{{4x(7x-5)+(21x-15)}}} Factor out the GCF {{{4x}}} from the first group.



{{{4x(7x-5)+3(7x-5)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(4x+3)(7x-5)}}} Combine like terms. Or factor out the common term {{{7x-5}}}



===============================================================



Answer:



So {{{28x^2+x-15}}} factors to {{{(4x+3)(7x-5)}}}.



In other words, {{{28x^2+x-15=(4x+3)(7x-5)}}}.



Note: you can check the answer by expanding {{{(4x+3)(7x-5)}}} to get {{{28x^2+x-15}}} or by graphing the original expression and the answer (the two graphs should be identical).