Question 551194
I'll do the first one to get you started




Looking at the expression {{{22n^2+n-5}}}, we can see that the first coefficient is {{{22}}}, the second coefficient is {{{1}}}, and the last term is {{{-5}}}.



Now multiply the first coefficient {{{22}}} by the last term {{{-5}}} to get {{{(22)(-5)=-110}}}.



Now the question is: what two whole numbers multiply to {{{-110}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{1}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-110}}} (the previous product).



Factors of {{{-110}}}:

1,2,5,10,11,22,55,110

-1,-2,-5,-10,-11,-22,-55,-110



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-110}}}.

1*(-110) = -110
2*(-55) = -110
5*(-22) = -110
10*(-11) = -110
(-1)*(110) = -110
(-2)*(55) = -110
(-5)*(22) = -110
(-10)*(11) = -110


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{1}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-110</font></td><td  align="center"><font color=black>1+(-110)=-109</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-55</font></td><td  align="center"><font color=black>2+(-55)=-53</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-22</font></td><td  align="center"><font color=black>5+(-22)=-17</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-11</font></td><td  align="center"><font color=black>10+(-11)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>110</font></td><td  align="center"><font color=black>-1+110=109</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>55</font></td><td  align="center"><font color=black>-2+55=53</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>22</font></td><td  align="center"><font color=black>-5+22=17</font></td></tr><tr><td  align="center"><font color=red>-10</font></td><td  align="center"><font color=red>11</font></td><td  align="center"><font color=red>-10+11=1</font></td></tr></table>



From the table, we can see that the two numbers {{{-10}}} and {{{11}}} add to {{{1}}} (the middle coefficient).



So the two numbers {{{-10}}} and {{{11}}} both multiply to {{{-110}}} <font size=4><b>and</b></font> add to {{{1}}}



Now replace the middle term {{{1n}}} with {{{-10n+11n}}}. Remember, {{{-10}}} and {{{11}}} add to {{{1}}}. So this shows us that {{{-10n+11n=1n}}}.



{{{22n^2+highlight(-10n+11n)-5}}} Replace the second term {{{1n}}} with {{{-10n+11n}}}.



{{{(22n^2-10n)+(11n-5)}}} Group the terms into two pairs.



{{{2n(11n-5)+(11n-5)}}} Factor out the GCF {{{2n}}} from the first group.



{{{2n(11n-5)+1(11n-5)}}} Factor out {{{1}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2n+1)(11n-5)}}} Combine like terms. Or factor out the common term {{{11n-5}}}



===============================================================



Answer:



So {{{22n^2+n-5}}} factors to {{{(2n+1)(11n-5)}}}.



In other words, {{{22n^2+n-5=(2n+1)(11n-5)}}}.



Note: you can check the answer by expanding {{{(2n+1)(11n-5)}}} to get {{{22n^2+n-5}}} or by graphing the original expression and the answer (the two graphs should be identical).