Question 551188


Looking at the expression {{{n^2+n-42}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{1}}}, and the last term is {{{-42}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-42}}} to get {{{(1)(-42)=-42}}}.



Now the question is: what two whole numbers multiply to {{{-42}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{1}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-42}}} (the previous product).



Factors of {{{-42}}}:

1,2,3,6,7,14,21,42

-1,-2,-3,-6,-7,-14,-21,-42



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-42}}}.

1*(-42) = -42
2*(-21) = -42
3*(-14) = -42
6*(-7) = -42
(-1)*(42) = -42
(-2)*(21) = -42
(-3)*(14) = -42
(-6)*(7) = -42


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{1}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-42</font></td><td  align="center"><font color=black>1+(-42)=-41</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>2+(-21)=-19</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>3+(-14)=-11</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>6+(-7)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>-1+42=41</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>-2+21=19</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>-3+14=11</font></td></tr><tr><td  align="center"><font color=red>-6</font></td><td  align="center"><font color=red>7</font></td><td  align="center"><font color=red>-6+7=1</font></td></tr></table>



From the table, we can see that the two numbers {{{-6}}} and {{{7}}} add to {{{1}}} (the middle coefficient).



So the two numbers {{{-6}}} and {{{7}}} both multiply to {{{-42}}} <font size=4><b>and</b></font> add to {{{1}}}



Now replace the middle term {{{1n}}} with {{{-6n+7n}}}. Remember, {{{-6}}} and {{{7}}} add to {{{1}}}. So this shows us that {{{-6n+7n=1n}}}.



{{{n^2+highlight(-6n+7n)-42}}} Replace the second term {{{1n}}} with {{{-6n+7n}}}.



{{{(n^2-6n)+(7n-42)}}} Group the terms into two pairs.



{{{n(n-6)+(7n-42)}}} Factor out the GCF {{{n}}} from the first group.



{{{n(n-6)+7(n-6)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(n+7)(n-6)}}} Combine like terms. Or factor out the common term {{{n-6}}}



===============================================================



Answer:



So {{{n^2+n-42}}} factors to {{{(n+7)(n-6)}}}.



In other words, {{{n^2+n-42=(n+7)(n-6)}}}.



Note: you can check the answer by expanding {{{(n+7)(n-6)}}} to get {{{n^2+n-42}}} or by graphing the original expression and the answer (the two graphs should be identical).