Question 551020
If f(x)={{{x^3+1}}} and {{{f^-1}}} is the inverse function of f, what is {{{f^-1}}}(4)?
y = f(x)
y = x^3 + 1
Find the inverse equation, replace x with y, solve for y
x = y^3 + 1
x - 1 = y^3
y = {{{3sqrt(x-1)}}}; that's the cube root of (x-1)
when x = 4
y = {{{3sqrt(4-1)}}};
y = {{{3sqrt(3)}}};
or
y = {{{3^(1/3)}}}
{{{f^-1}}}(4) = 1.44225