Question 550941


{{{70w^3-125w^2+30w}}} Start with the given expression.



{{{5w(14w^2-25w+6)}}} Factor out the GCF {{{5w}}}.



Now let's try to factor the inner expression {{{14w^2-25w+6}}}



---------------------------------------------------------------



Looking at the expression {{{14w^2-25w+6}}}, we can see that the first coefficient is {{{14}}}, the second coefficient is {{{-25}}}, and the last term is {{{6}}}.



Now multiply the first coefficient {{{14}}} by the last term {{{6}}} to get {{{(14)(6)=84}}}.



Now the question is: what two whole numbers multiply to {{{84}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-25}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{84}}} (the previous product).



Factors of {{{84}}}:

1,2,3,4,6,7,12,14,21,28,42,84

-1,-2,-3,-4,-6,-7,-12,-14,-21,-28,-42,-84



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{84}}}.

1*84 = 84
2*42 = 84
3*28 = 84
4*21 = 84
6*14 = 84
7*12 = 84
(-1)*(-84) = 84
(-2)*(-42) = 84
(-3)*(-28) = 84
(-4)*(-21) = 84
(-6)*(-14) = 84
(-7)*(-12) = 84


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-25}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>84</font></td><td  align="center"><font color=black>1+84=85</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>2+42=44</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>3+28=31</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>4+21=25</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>6+14=20</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>7+12=19</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-84</font></td><td  align="center"><font color=black>-1+(-84)=-85</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-42</font></td><td  align="center"><font color=black>-2+(-42)=-44</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>-3+(-28)=-31</font></td></tr><tr><td  align="center"><font color=red>-4</font></td><td  align="center"><font color=red>-21</font></td><td  align="center"><font color=red>-4+(-21)=-25</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>-6+(-14)=-20</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-7+(-12)=-19</font></td></tr></table>



From the table, we can see that the two numbers {{{-4}}} and {{{-21}}} add to {{{-25}}} (the middle coefficient).



So the two numbers {{{-4}}} and {{{-21}}} both multiply to {{{84}}} <font size=4><b>and</b></font> add to {{{-25}}}



Now replace the middle term {{{-25w}}} with {{{-4w-21w}}}. Remember, {{{-4}}} and {{{-21}}} add to {{{-25}}}. So this shows us that {{{-4w-21w=-25w}}}.



{{{14w^2+highlight(-4w-21w)+6}}} Replace the second term {{{-25w}}} with {{{-4w-21w}}}.



{{{(14w^2-4w)+(-21w+6)}}} Group the terms into two pairs.



{{{2w(7w-2)+(-21w+6)}}} Factor out the GCF {{{2w}}} from the first group.



{{{2w(7w-2)-3(7w-2)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2w-3)(7w-2)}}} Combine like terms. Or factor out the common term {{{7w-2}}}



--------------------------------------------------



So {{{5w(14w^2-25w+6)}}} then factors further to {{{5w(2w-3)(7w-2)}}}



===============================================================



Answer:



So {{{70w^3-125w^2+30w}}} completely factors to {{{5w(2w-3)(7w-2)}}}.



In other words, {{{70w^3-125w^2+30w=5w(2w-3)(7w-2)}}}.



Note: you can check the answer by expanding {{{5w(2w-3)(7w-2)}}} to get {{{70w^3-125w^2+30w}}} or by graphing the original expression and the answer (the two graphs should be identical).