Question 550566


{{{(4z-3)^2}}} Start with the given expression.



{{{(4z-3)(4z-3)}}} Expand. Remember something like {{{x^2=x*x}}}.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(4z)-3)(highlight(4z)-3)}}} Multiply the <font color="red">F</font>irst terms:{{{(4*z)*(4*z)=16*z^2}}}.



{{{(highlight(4z)-3)(4z+highlight(-3))}}} Multiply the <font color="red">O</font>uter terms:{{{(4*z)*(-3)=-12*z}}}.



{{{(4z+highlight(-3))(highlight(4z)-3)}}} Multiply the <font color="red">I</font>nner terms:{{{(-3)*(4*z)=-12*z}}}.



{{{(4z+highlight(-3))(4z+highlight(-3))}}} Multiply the <font color="red">L</font>ast terms:{{{(-3)*(-3)=9}}}.



---------------------------------------------------

So we have the terms: {{{16*z^2}}}, {{{-12*z}}}, {{{-12*z}}}, {{{9}}} 



{{{16*z^2-12*z-12*z+9}}} Now add every term listed above to make a single expression.



{{{16z^2-24z+9}}} Now combine like terms.



So {{{(4z-3)^2}}} FOILs to {{{16z^2-24z+9}}}.



In other words, {{{(4z-3)^2=16z^2-24z+9}}}.