Question 550525


{{{5t^3-21t^2+18t}}} Start with the given expression.



{{{t(5t^2-21t+18)}}} Factor out the GCF {{{t}}}.



Now let's try to factor the inner expression {{{5t^2-21t+18}}}



---------------------------------------------------------------



Looking at the expression {{{5t^2-21t+18}}}, we can see that the first coefficient is {{{5}}}, the second coefficient is {{{-21}}}, and the last term is {{{18}}}.



Now multiply the first coefficient {{{5}}} by the last term {{{18}}} to get {{{(5)(18)=90}}}.



Now the question is: what two whole numbers multiply to {{{90}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-21}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{90}}} (the previous product).



Factors of {{{90}}}:

1,2,3,5,6,9,10,15,18,30,45,90

-1,-2,-3,-5,-6,-9,-10,-15,-18,-30,-45,-90



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{90}}}.

1*90 = 90
2*45 = 90
3*30 = 90
5*18 = 90
6*15 = 90
9*10 = 90
(-1)*(-90) = 90
(-2)*(-45) = 90
(-3)*(-30) = 90
(-5)*(-18) = 90
(-6)*(-15) = 90
(-9)*(-10) = 90


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-21}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>90</font></td><td  align="center"><font color=black>1+90=91</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>2+45=47</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>3+30=33</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>5+18=23</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>6+15=21</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>9+10=19</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-90</font></td><td  align="center"><font color=black>-1+(-90)=-91</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>-2+(-45)=-47</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>-3+(-30)=-33</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-5+(-18)=-23</font></td></tr><tr><td  align="center"><font color=red>-6</font></td><td  align="center"><font color=red>-15</font></td><td  align="center"><font color=red>-6+(-15)=-21</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-9+(-10)=-19</font></td></tr></table>



From the table, we can see that the two numbers {{{-6}}} and {{{-15}}} add to {{{-21}}} (the middle coefficient).



So the two numbers {{{-6}}} and {{{-15}}} both multiply to {{{90}}} <font size=4><b>and</b></font> add to {{{-21}}}



Now replace the middle term {{{-21t}}} with {{{-6t-15t}}}. Remember, {{{-6}}} and {{{-15}}} add to {{{-21}}}. So this shows us that {{{-6t-15t=-21t}}}.



{{{5t^2+highlight(-6t-15t)+18}}} Replace the second term {{{-21t}}} with {{{-6t-15t}}}.



{{{(5t^2-6t)+(-15t+18)}}} Group the terms into two pairs.



{{{t(5t-6)+(-15t+18)}}} Factor out the GCF {{{t}}} from the first group.



{{{t(5t-6)-3(5t-6)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(t-3)(5t-6)}}} Combine like terms. Or factor out the common term {{{5t-6}}}



--------------------------------------------------



So {{{t(5t^2-21t+18)}}} then factors further to {{{t(t-3)(5t-6)}}}



===============================================================



Answer:



So {{{5t^3-21t^2+18t}}} completely factors to {{{t(t-3)(5t-6)}}}.



In other words, {{{5t^3-21t^2+18t=t(t-3)(5t-6)}}}.



Note: you can check the answer by expanding {{{t(t-3)(5t-6)}}} to get {{{5t^3-21t^2+18t}}} or by graphing the original expression and the answer (the two graphs should be identical).