Question 550523
Looking at the expression {{{6x^2+19x+10}}}, we can see that the first coefficient is {{{6}}}, the second coefficient is {{{19}}}, and the last term is {{{10}}}.



Now multiply the first coefficient {{{6}}} by the last term {{{10}}} to get {{{(6)(10)=60}}}.



Now the question is: what two whole numbers multiply to {{{60}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{19}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{60}}} (the previous product).



Factors of {{{60}}}:

1,2,3,4,5,6,10,12,15,20,30,60

-1,-2,-3,-4,-5,-6,-10,-12,-15,-20,-30,-60



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{60}}}.

1*60 = 60
2*30 = 60
3*20 = 60
4*15 = 60
5*12 = 60
6*10 = 60
(-1)*(-60) = 60
(-2)*(-30) = 60
(-3)*(-20) = 60
(-4)*(-15) = 60
(-5)*(-12) = 60
(-6)*(-10) = 60


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{19}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>1+60=61</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>2+30=32</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>3+20=23</font></td></tr><tr><td  align="center"><font color=red>4</font></td><td  align="center"><font color=red>15</font></td><td  align="center"><font color=red>4+15=19</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>5+12=17</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>6+10=16</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>-1+(-60)=-61</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>-2+(-30)=-32</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-3+(-20)=-23</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-4+(-15)=-19</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-5+(-12)=-17</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-6+(-10)=-16</font></td></tr></table>



From the table, we can see that the two numbers {{{4}}} and {{{15}}} add to {{{19}}} (the middle coefficient).



So the two numbers {{{4}}} and {{{15}}} both multiply to {{{60}}} <font size=4><b>and</b></font> add to {{{19}}}



Now replace the middle term {{{19x}}} with {{{4x+15x}}}. Remember, {{{4}}} and {{{15}}} add to {{{19}}}. So this shows us that {{{4x+15x=19x}}}.



{{{6x^2+highlight(4x+15x)+10}}} Replace the second term {{{19x}}} with {{{4x+15x}}}.



{{{(6x^2+4x)+(15x+10)}}} Group the terms into two pairs.



{{{2x(3x+2)+(15x+10)}}} Factor out the GCF {{{2x}}} from the first group.



{{{2x(3x+2)+5(3x+2)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2x+5)(3x+2)}}} Combine like terms. Or factor out the common term {{{3x+2}}}



===============================================================



Answer:



So {{{6x^2+19x+10}}} factors to {{{(2x+5)(3x+2)}}}.



In other words, {{{6x^2+19x+10=(2x+5)(3x+2)}}}.



Note: you can check the answer by expanding {{{(2x+5)(3x+2)}}} to get {{{6x^2+19x+10}}} or by graphing the original expression and the answer (the two graphs should be identical).