Question 549847

{{{A=P(1+r/n)^(n*t)}}} Start with the compound interest formula



{{{A=800(1+0.032/1)^(1*15)}}} Plug in {{{P=800}}}, {{{r=0.032}}} (the decimal equivalent of 3.2%), {{{n=1}}} and {{{t=15}}}.



{{{A=800(1+0.032)^(1*15)}}} Evaluate {{{0.032/1}}} to get {{{0.032}}}



{{{A=800(1.032)^(1*15)}}} Add {{{1}}} to {{{0.032}}} to get {{{1.032}}}



{{{A=800(1.032)^(15)}}} Multiply {{{1}}} and {{{15}}} to get {{{15}}}.



{{{A=800(1.60396711263693)}}} Evaluate {{{(1.032)^(15)}}} to get {{{1.60396711263693}}}.



{{{A=1283.17369010954}}} Multiply {{{800}}} and {{{1.60396711263693}}} to get {{{1283.17369010954}}}.



{{{A=1283.17}}} Round to the nearest hundredth (ie to the nearest penny).



So there will be $1283.17 in the account.