Question 549833
{{{x=5}}}, {{{x=3+4i}}}, or {{{x=3-4i}}}



{{{x-5=0}}}, {{{x-3=4i}}}, or {{{x-3=-4i}}}



{{{x-5=0}}}, {{{(x-3)^2=(4i)^2}}}, or {{{(x-3)^2=(-4i)^2}}}



{{{x-5=0}}} or {{{(x-3)^2=-16}}}



{{{x-5=0}}} or {{{(x-3)^2+16=0}}}



{{{(x-5)((x-3)^2+16)=0}}}



{{{(x-5)(x^2-6x+9+16)=0}}}



{{{(x-5)(x^2-6x+25)=0}}}



{{{x(x^2-6x+25)-5(x^2-6x+25)=0}}}



{{{x^3-6x^2+25x-5x^2+30x-125=0}}}



{{{x^3-11x^2+55x-125=0}}}



So the polynomial of degree 3 with roots 5, 3+4i  is {{{x^3-11x^2+55x-125}}}