Question 549797
{{{A=P(1+r/n)^(n*t)}}} Start with the compound interest formula



{{{A=361(1+0.013/365)^(365*16)}}} Plug in {{{P=361}}}, {{{r=0.013}}} (the decimal equivalent of 1.3%), {{{n=365}}} and {{{t=16}}}.



{{{A=361(1+0.00003561643836)^(365*16)}}} Evaluate {{{0.013/365}}} to get {{{0.00003561643836
}}}



{{{A=361(1.00003561643836)^(365*16)}}} Add {{{1}}} to {{{3.56164383561644e-005}}} to get {{{1.00003561643836}}}



{{{A=361(1.00003561643836)^(5840)}}} Multiply {{{365}}} and {{{16}}} to get {{{5840}}}.



{{{A=361(1.23120860911695)}}} Evaluate {{{(1.00003561643836)^(5840)}}} to get {{{1.23120860911695}}}.



{{{A=444.46630789122}}} Multiply {{{361}}} and {{{1.23120860911695}}} to get {{{444.46630789122}}}.



{{{A=444.47}}} Round to the nearest hundredth (ie to the nearest penny).



So the account balance will be $444.47