Question 549316
Find all zeros of h(x)= x³ - 9x² + 19x - 35
<pre>
If there are any rational zeros they have to be ± a divisors of 35.

So we try 5

5|1 -9  19 -35
 |<u>   5 -20  -5</u>
  1 -4  -1 -40 

Nope, 5 is not a zero.

So try 7

7|1 -9  19 -35
 |<u>   7 -14  35</u>
  1 -2   5   0

Yep that's a zero, so we have now factored h(x) as

h(x)= x³ - 9x² + 19x - 35
h(x)= (x - 7)(x² - 2x + 5)

Set each factor = 0

x - 7 = 0     x² - 2x + 5 = 0
    x = 7

The first gives back the factor we just found.

The second must be solved with the quadratic formula:

x = {{{(-b +- sqrt( b^2-4*a*c ))/(2*a) }}}

x = {{{(-(-2) +- sqrt( (-2)^2-4*(1)*(5) ))/(2*(1)) }}}

x = {{{(2 +- sqrt(4-20 ))/2 }}}

x = {{{(2 +- sqrt(-16 ))/2 }}}

x = {{{(2 +- i*sqrt(16 ))/2 }}}

x = {{{(2 +- 4i)/2 }}}

x = {{{(2(1 +- 2i))/2 }}}

x = {{{(cross(2)(1 +- 2i))/cross(2) }}}

x = 1 ± 2i

The 3 zeros are 7, 1 + 2i, and 1 - 2i 

--------------------------------------------


Find all zeros of 

f(x)= x³ - 2x² + 25x - 50

That one can be factored by grouping:

Factor x² out of the first two terms and 25 out of the last two:

f(x) = x²(x - 2) + 25(x - 2)

Factor (x - 2) out of both terms:

f(x) = (x - 2)(x² + 25)

Set each = 0:

x - 2 = 0
    x = 2

x² + 25 = 0
     x² = -25
      x = {{{"" +- sqrt(-25)}}}
      x = {{{"" +- i*sqrt(25)}}}
      x = ±5i

The three zeros are 2, 6i, and -5i

Edwin</pre>