Question 548530


Looking at the expression {{{t^2-24t+135}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-24}}}, and the last term is {{{135}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{135}}} to get {{{(1)(135)=135}}}.



Now the question is: what two whole numbers multiply to {{{135}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-24}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{135}}} (the previous product).



Factors of {{{135}}}:

1,3,5,9,15,27,45,135

-1,-3,-5,-9,-15,-27,-45,-135



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{135}}}.

1*135 = 135
3*45 = 135
5*27 = 135
9*15 = 135
(-1)*(-135) = 135
(-3)*(-45) = 135
(-5)*(-27) = 135
(-9)*(-15) = 135


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-24}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>135</font></td><td  align="center"><font color=black>1+135=136</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>3+45=48</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>27</font></td><td  align="center"><font color=black>5+27=32</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>9+15=24</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-135</font></td><td  align="center"><font color=black>-1+(-135)=-136</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>-3+(-45)=-48</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-27</font></td><td  align="center"><font color=black>-5+(-27)=-32</font></td></tr><tr><td  align="center"><font color=red>-9</font></td><td  align="center"><font color=red>-15</font></td><td  align="center"><font color=red>-9+(-15)=-24</font></td></tr></table>



From the table, we can see that the two numbers {{{-9}}} and {{{-15}}} add to {{{-24}}} (the middle coefficient).



So the two numbers {{{-9}}} and {{{-15}}} both multiply to {{{135}}} <font size=4><b>and</b></font> add to {{{-24}}}



Now replace the middle term {{{-24t}}} with {{{-9t-15t}}}. Remember, {{{-9}}} and {{{-15}}} add to {{{-24}}}. So this shows us that {{{-9t-15t=-24t}}}.



{{{t^2+highlight(-9t-15t)+135}}} Replace the second term {{{-24t}}} with {{{-9t-15t}}}.



{{{(t^2-9t)+(-15t+135)}}} Group the terms into two pairs.



{{{t(t-9)+(-15t+135)}}} Factor out the GCF {{{t}}} from the first group.



{{{t(t-9)-15(t-9)}}} Factor out {{{15}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(t-15)(t-9)}}} Combine like terms. Or factor out the common term {{{t-9}}}



===============================================================



Answer:



So {{{t^2-24t+135}}} factors to {{{(t-15)(t-9)}}}.



In other words, {{{t^2-24t+135=(t-15)(t-9)}}}.



Note: you can check the answer by expanding {{{(t-15)(t-9)}}} to get {{{t^2-24t+135}}} or by graphing the original expression and the answer (the two graphs should be identical).