Question 541888
{{{3((1/(5x)) -(2/(5x))) + 6 = (1/6)(3x-2)}}}
{{{3(-(1/(5x))) + 6 = (1/6)(3x-2)}}}
{{{-3/(5x) + 6 = (1/6)(3x-2)}}} multiply everything by the common denom (5x*6)
{{{(5x*6)*(-3/(5x)) + (5x*6)*6 = (1/6)(5x*6)(3x-2)}}} do cancelations
{{{(cross(5x)*6)*(-3/cross(5x)) + (5x*6)*6 = (1/cross(6))(5x*cross(6))(3x-2)}}}
{{{-18 + 180x = 15x^2-10x)}}}
{{{-18 + 180x = 15x^2-10x)}}} subtract 180x
{{{-18 = 15x^2-190x)}}}add 18
{{{0 = 15x^2-190x+18)}}}
quadratic formula
*[invoke quadratic "x", 15, -190, 18]
x=12.5712 , 0.0954
{{{3((1/(5x)) -(2/(5x))) + 6 = (1/6)(3x-2)}}}
{{{3((1/(5(0.0954))) -(2/(5(0.0954)))) + 6 = (1/6)(3(0.0954)-2)}}}
{{{3((1/.477)-(2/.477)) + 6 = (1/6)(.2862-2)}}}
{{{3(-1/.477) + 6 = (1/6)(-1.7138)}}}
{{{(-3/.477) + 6 = (-.2856)}}}
{{{-6.28 + 6 = -.28}}}
{{{-.28=-.28}}}
correct
you would do same with other x value to check