Question 545349


{{{A=P(1+r/n)^(n*t)}}} Start with the compound interest formula



{{{A=10(1+0.055/2)^(2*29)}}} Plug in {{{P=10}}}, {{{r=0.055}}} (the decimal equivalent of 5.5%), {{{n=2}}} and {{{t=29}}}.



{{{A=10(1+0.0275)^(2*29)}}} Evaluate {{{0.055/2}}}} to get {{{0.0275}}}



{{{A=10(1.0275)^(2*29)}}} Add {{{1}}} to {{{0.0275}}} to get {{{1.0275}}}



{{{A=10(1.0275)^(58)}}} Multiply {{{2}}} and {{{29}}} to get {{{58}}}.



{{{A=10(4.82332106540981)}}} Evaluate {{{(1.0275)^(58)}}} to get {{{4.82332106540981}}}.



{{{A=48.2332106540981}}} Multiply {{{10}}} and {{{4.82332106540981}}} to get {{{48.2332106540981}}}.



{{{A=48.23}}} Round to the nearest hundredth (ie to the nearest penny).



So the accumulated amount would be $48.23