Question 542152

{{{18x^2-60xy+50y^2}}} Start with the given expression.



{{{2(9x^2-30xy+25y^2)}}} Factor out the GCF {{{2}}}.



Now let's try to factor the inner expression {{{9x^2-30xy+25y^2}}}



---------------------------------------------------------------



Looking at the expression {{{9x^2-30xy+25y^2}}}, we can see that the first coefficient is {{{9}}}, the second coefficient is {{{-30}}}, and the last coefficient is {{{25}}}.



Now multiply the first coefficient {{{9}}} by the last coefficient {{{25}}} to get {{{(9)(25)=225}}}.



Now the question is: what two whole numbers multiply to {{{225}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-30}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{225}}} (the previous product).



Factors of {{{225}}}:

1,3,5,9,15,25,45,75,225

-1,-3,-5,-9,-15,-25,-45,-75,-225



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{225}}}.

1*225 = 225
3*75 = 225
5*45 = 225
9*25 = 225
15*15 = 225
(-1)*(-225) = 225
(-3)*(-75) = 225
(-5)*(-45) = 225
(-9)*(-25) = 225
(-15)*(-15) = 225


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-30}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>225</font></td><td  align="center"><font color=black>1+225=226</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>75</font></td><td  align="center"><font color=black>3+75=78</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>5+45=50</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>25</font></td><td  align="center"><font color=black>9+25=34</font></td></tr><tr><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>15+15=30</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-225</font></td><td  align="center"><font color=black>-1+(-225)=-226</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-75</font></td><td  align="center"><font color=black>-3+(-75)=-78</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>-5+(-45)=-50</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-25</font></td><td  align="center"><font color=black>-9+(-25)=-34</font></td></tr><tr><td  align="center"><font color=red>-15</font></td><td  align="center"><font color=red>-15</font></td><td  align="center"><font color=red>-15+(-15)=-30</font></td></tr></table>



From the table, we can see that the two numbers {{{-15}}} and {{{-15}}} add to {{{-30}}} (the middle coefficient).



So the two numbers {{{-15}}} and {{{-15}}} both multiply to {{{225}}} <font size=4><b>and</b></font> add to {{{-30}}}



Now replace the middle term {{{-30xy}}} with {{{-15xy-15xy}}}. Remember, {{{-15}}} and {{{-15}}} add to {{{-30}}}. So this shows us that {{{-15xy-15xy=-30xy}}}.



{{{9x^2+highlight(-15xy-15xy)+25y^2}}} Replace the second term {{{-30xy}}} with {{{-15xy-15xy}}}.



{{{(9x^2-15xy)+(-15xy+25y^2)}}} Group the terms into two pairs.



{{{3x(3x-5y)+(-15xy+25y^2)}}} Factor out the GCF {{{3x}}} from the first group.



{{{3x(3x-5y)-5y(3x-5y)}}} Factor out the {{{-5y}}} from the second group.



{{{(3x-5y)(3x-5y)}}} Factor out {{{3x-5y}}}



{{{(3x-5y)^2}}} Condense the terms.




So {{{18x^2-60xy+50y^2}}} completely factors to {{{2(3x-5y)^2}}}



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim