Question 538903

Looking at the expression {{{9x^2+89x+40}}}, we can see that the first coefficient is {{{9}}}, the second coefficient is {{{89}}}, and the last term is {{{40}}}.



Now multiply the first coefficient {{{9}}} by the last term {{{40}}} to get {{{(9)(40)=360}}}.



Now the question is: what two whole numbers multiply to {{{360}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{89}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{360}}} (the previous product).



Factors of {{{360}}}:

1,2,3,4,5,6,8,9,10,12,15,18,20,24,30,36,40,45,60,72,90,120,180,360

-1,-2,-3,-4,-5,-6,-8,-9,-10,-12,-15,-18,-20,-24,-30,-36,-40,-45,-60,-72,-90,-120,-180,-360



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{360}}}.

1*360 = 360
2*180 = 360
3*120 = 360
4*90 = 360
5*72 = 360
6*60 = 360
8*45 = 360
9*40 = 360
10*36 = 360
12*30 = 360
15*24 = 360
18*20 = 360
(-1)*(-360) = 360
(-2)*(-180) = 360
(-3)*(-120) = 360
(-4)*(-90) = 360
(-5)*(-72) = 360
(-6)*(-60) = 360
(-8)*(-45) = 360
(-9)*(-40) = 360
(-10)*(-36) = 360
(-12)*(-30) = 360
(-15)*(-24) = 360
(-18)*(-20) = 360


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{89}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>360</font></td><td  align="center"><font color=black>1+360=361</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>180</font></td><td  align="center"><font color=black>2+180=182</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>120</font></td><td  align="center"><font color=black>3+120=123</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>90</font></td><td  align="center"><font color=black>4+90=94</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>72</font></td><td  align="center"><font color=black>5+72=77</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>6+60=66</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>8+45=53</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>9+40=49</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>10+36=46</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>12+30=42</font></td></tr><tr><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>15+24=39</font></td></tr><tr><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>18+20=38</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-360</font></td><td  align="center"><font color=black>-1+(-360)=-361</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-180</font></td><td  align="center"><font color=black>-2+(-180)=-182</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-120</font></td><td  align="center"><font color=black>-3+(-120)=-123</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-90</font></td><td  align="center"><font color=black>-4+(-90)=-94</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-72</font></td><td  align="center"><font color=black>-5+(-72)=-77</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>-6+(-60)=-66</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>-8+(-45)=-53</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-40</font></td><td  align="center"><font color=black>-9+(-40)=-49</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>-10+(-36)=-46</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>-12+(-30)=-42</font></td></tr><tr><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>-15+(-24)=-39</font></td></tr><tr><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-18+(-20)=-38</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{89}}}. So {{{9x^2+89x+40}}} cannot be factored.



===============================================================


<a name="ans">


Answer:



So {{{9x^2+89x+40}}} doesn't factor at all (over the rational numbers).



So {{{9x^2+89x+40}}} is prime.



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim