Question 537737


{{{16x^2-25y^2}}} Start with the given expression.



{{{(4x)^2-25y^2}}} Rewrite {{{16x^2}}} as {{{(4x)^2}}}.



{{{(4x)^2-(5y)^2}}} Rewrite {{{25y^2}}} as {{{(5y)^2}}}.



Notice how we have a difference of squares {{{A^2-B^2}}} where in this case {{{A=4x}}} and {{{B=5y}}}.



So let's use the difference of squares formula {{{A^2-B^2=(A+B)(A-B)}}} to factor the expression:



{{{A^2-B^2=(A+B)(A-B)}}} Start with the difference of squares formula.



{{{(4x)^2-(5y)^2=(4x+5y)(4x-5y)}}} Plug in {{{A=4x}}} and {{{B=5y}}}.



So this shows us that {{{16x^2-25y^2}}} factors to {{{(4x+5y)(4x-5y)}}}.



In other words {{{16x^2-25y^2=(4x+5y)(4x-5y)}}}.



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim