Question 536807
Since we have the conclusion N, let's assume for the sake of argument that the opposite is true. In other words, let's assume that the conclusion is ~N. Our job is to show that a contradiction will arise, and if it does, then the opposite of ~N must be true (ie N is really the correct conclusion).


<pre>
1.) (K > K) > R
2.) (R v M) > N                     / N
----------------
	3.)  ~N                     AIP
	4.)  ~(R v M)        2,3    Modus Tollens
	5.)  ~R & ~M         4      De Morgan's Law
	6.)  ~R              5      Simplification
	7.)  ~(K > K)        1,6    Modus Tollens
	8.)  ~(~K v K)       7      Material Implication
	9.)  ~~K & ~K        8      De Morgan's Law
	10.) K & ~K          9      Double Negation
11.) N                       3-10   IP
</pre>