Question 536433
Is this {{{ (3x^3*y^4)^2 }}} ?
If this is the problem, it is equal to:
{{{ ( 3x^3*y^4 )*( 3x^3*y^4 ) }}}
which equals:
{{{ (3*x*x*x*y*y*y*y)*(3*x*x*x*y*y*y*y) }}}
From this, you can put the 3's, x's, and y's together:
{{{ 3*3*x*x*x*x*x*x*y*y*y*y*y*y*y*y }}}
Now express this using powers
{{{ 9x^6*y^8 }}}
I did this the long way so you can see the operation,
but here's how to do it using this general rule:
{{{ (a^b)^c = a^(b*c) }}}
so, {{{ (a^2)^4 = a^8 }}} as you can  see:
{{{ (a*a)*(a*a)*(a*a)*(a*a)  = a^8 }}}
-----------------------------
Applying this to your problem:
{{{ (3x^3*y^4)^2  = 3^2*x^(3*2)*y^(4*2) }}} 
{{{ (3x^3*y^4)^2 = 9x^6*y^8 }}}
Hope this helps