Question 52335
{{{x/2x + 2 = 2x/4x + 4 + 2x- 3/x + 1}}}
{{{1/2 + 2 = 1/2 + 4 + 2x- 3/x + 1}}}
{{{2 = 2x - 3/x + 5}}}
{{{0 = 2x + 3 - 3/x}}}
multiply both sides with x
{{{0 = 2x^2 +3x - 3}}}
divide both sides with 2
{{{0 = x^2 + 3/2*x - 3/2}}}
add 33/16 to both sides
{{{33/16 = x^2 + 3/2*x + 9/16}}}
{{{33/16 = (x+3/4)^2}}}
{{{+- sqrt(33/16) = x+3/4}}}
{{{+- sqrt(33)/4 - 3/4 = x}}}
{{{(+- sqrt(33)-3)/4 = x}}}


so x can be both {{{(sqrt(33)-3)/4}}} or {{{(-sqrt(33)-3)/4}}}