Question 530088


Looking at the expression {{{12a^2+8a-15}}}, we can see that the first coefficient is {{{12}}}, the second coefficient is {{{8}}}, and the last term is {{{-15}}}.



Now multiply the first coefficient {{{12}}} by the last term {{{-15}}} to get {{{(12)(-15)=-180}}}.



Now the question is: what two whole numbers multiply to {{{-180}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{8}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-180}}} (the previous product).



Factors of {{{-180}}}:

1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,180

-1,-2,-3,-4,-5,-6,-9,-10,-12,-15,-18,-20,-30,-36,-45,-60,-90,-180



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-180}}}.

1*(-180) = -180
2*(-90) = -180
3*(-60) = -180
4*(-45) = -180
5*(-36) = -180
6*(-30) = -180
9*(-20) = -180
10*(-18) = -180
12*(-15) = -180
(-1)*(180) = -180
(-2)*(90) = -180
(-3)*(60) = -180
(-4)*(45) = -180
(-5)*(36) = -180
(-6)*(30) = -180
(-9)*(20) = -180
(-10)*(18) = -180
(-12)*(15) = -180


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{8}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-180</font></td><td  align="center"><font color=black>1+(-180)=-179</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-90</font></td><td  align="center"><font color=black>2+(-90)=-88</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>3+(-60)=-57</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>4+(-45)=-41</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>5+(-36)=-31</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>6+(-30)=-24</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>9+(-20)=-11</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>10+(-18)=-8</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>12+(-15)=-3</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>180</font></td><td  align="center"><font color=black>-1+180=179</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>90</font></td><td  align="center"><font color=black>-2+90=88</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>-3+60=57</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>-4+45=41</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>-5+36=31</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>-6+30=24</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>-9+20=11</font></td></tr><tr><td  align="center"><font color=red>-10</font></td><td  align="center"><font color=red>18</font></td><td  align="center"><font color=red>-10+18=8</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>-12+15=3</font></td></tr></table>



From the table, we can see that the two numbers {{{-10}}} and {{{18}}} add to {{{8}}} (the middle coefficient).



So the two numbers {{{-10}}} and {{{18}}} both multiply to {{{-180}}} <font size=4><b>and</b></font> add to {{{8}}}



Now replace the middle term {{{8a}}} with {{{-10a+18a}}}. Remember, {{{-10}}} and {{{18}}} add to {{{8}}}. So this shows us that {{{-10a+18a=8a}}}.



{{{12a^2+highlight(-10a+18a)-15}}} Replace the second term {{{8a}}} with {{{-10a+18a}}}.



{{{(12a^2-10a)+(18a-15)}}} Group the terms into two pairs.



{{{2a(6a-5)+(18a-15)}}} Factor out the GCF {{{2a}}} from the first group.



{{{2a(6a-5)+3(6a-5)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2a+3)(6a-5)}}} Combine like terms. Or factor out the common term {{{6a-5}}}



===============================================================



Answer:



So {{{12a^2+8a-15}}} factors to {{{(2a+3)(6a-5)}}}.



In other words, {{{12a^2+8a-15=(2a+3)(6a-5)}}}.



Note: you can check the answer by expanding {{{(2a+3)(6a-5)}}} to get {{{12a^2+8a-15}}} or by graphing the original expression and the answer (the two graphs should be identical).



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim