Question 529334
Let {{{ a }}} = Mrs. Sabado's age now
Let {{{ b }}} = May's age now
given:
(1) {{{ a = 6b }}}
(2) {{{ a + 1 = ( b + 1)^2 }}}
----------------------
(2) {{{ a + 1 = b^2 + 2b + 1 }}}
Substitute (1) into (2)
(2) {{{ 6b + 1 = b^2 + 2b + 1 }}}
(2) {{{ b^2 - 4b = 0 }}}
(2) {{{ b*( b - 4 ) = 0 }}}
Either {{{ b = 0 }}} or {{{ b = 4 }}}
If {{{b = 4}}},
(1) {{{ a = 6b }}}
(1) {{{ a = 24 }}}
------------
If {{{ b=0 }}}, then
(1) {{{ a = 6b }}}
(1) {{{ a = 0 }}}
This says they are both newborns, which
is impossible, so
24 is Mrs. Sabado's age now
4 is May's age now
check:
(2) {{{ a + 1 = ( b + 1)^2 }}}
(2) {{{ 24 + 1 = ( 4 + 1)^2 }}}
(2) {{{ 25 = 5^2 }}}
(2) {{{ 25 = 25 }}}
OK